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The TELLURIDE project at 
Los Alamos is a strategic computing 
effort aimed at producing high 
fidelity simulations of metal 

solidification processes. Its code provides 
numerical simulations of solidification, fluid 
flow, heat transfer, phase transformations, 
mechanical deformation, and welding 
processes on the kinds of meshes seen in 
Fig. 1. The simulation of each component is 
driven by a discretization of the continuum 
equations describing the physical processes. 
The components are then coupled in a way 
that describes their true physical interaction. 

The ability of projects like TELLURIDE to 
model physical reality depends on several 
factors: accurate numerical models, stable 
computer implementations, realistic test 
data, and fast parallel algorithms. So when 
the simulations are unable to approximate 
reality, it can be quite difficult to find 
where things went awry. However, prior to 
executing any simulation, one can perform 

component testing, whereby ensuring that 
each component accurately models the 
physics it is supposed to describe. Here, 
we investigate inaccuracies in the heat 
transfer component that are due to a poor 
approximation of the heat flux using existing 
methodologies. Furthermore, we describe a 
robust approximation scheme for calculating 
the heat flux that is based on the support-
operators (SO) methodology [1]. 

The flux calculations within the heat transfer 
component arise within the nonlinear 
equation that describes the temporal 
change of specific enthalpy. The equation 
is discretized using finite volumes on a 
hexahedral mesh, and then flux values are 
computed on cell faces given cell-centered 
temperature values. There are two approaches 
to computing the flux. Both obtain the flux 
by combining a gradient calculation with 
knowledge of the conductivity and the 
normal vector. Where they differ is how the 
gradient is computed. Approach A computes 
the gradient on each face via the definition 
of the directional derivative. This yields a 
gradient that depends on the difference of 
the temperature values at the two adjacent 
cells and the vector directed from one cell 
center to the other. Approach B is a much 
more sophisticated algorithm that depends 
on surrounding cells. See [2] for a detailed 
description. The limitations of the two 
approaches are that approach A is inaccurate 
for nonorthogonal meshes, while approach B 
is inaccurate when there are jumps in the 
conductivity.

We observe the two approaches’ limitations 
for a simple problem on the unit cube. 
Specifically, for a smooth meshing of the 
unit cube (Fig. 2), a conductivity and 
a temperature distribution are defined. 
Then the normal component of the flux is 
calculated for each face and its deviation 
from the true value is measured. We use a 
conductivity of κ= 1 for x ≤ 1/2 and κ = 100 
for x > 1/2, and a temperature distribution 
given by 
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Figure 1—
Typical TELLURIDE 
mesh.
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For a sequence of smooth grids like in 
Fig. 2, we illustrate with the blue lines 
in Fig. 3 the lack of convergence of the 
interior and boundary root mean-squared 
error for approach A. We see the same type 
of divergence for approach B.
 
The SO approach relies on the SO 
discretization for diffusion-type equations. 
Similar to the approach B method, the 
computed flux depends on more than 
just the two adjacent cell-centered 
temperature values. However, in contrast 
to approach B, the SO approach correctly 
incorporates conductivity information 
so that inaccuracies do not arise from 
discontinuous conductivities. Again, see [1] 
for further details. 

In the heat transfer we use SO in the 
following way. To begin, we explicitly 
compute a flux rather than taking 
an intermediate step of computing a 
gradient. However, like approach A, we 
do compute a vector for each face of each 
cell that depends on the difference of the 
temperature between the two adjacent 
cells. We then employ this vector as the 
right-hand side of the appropriate matrix 
problem, i.e., a system of the form Au = f. 
Finally, we must solve this large system of 
algebraic equations using an iterative solution 
method. That is, we find the solution, say u, 
by making an initial guess and then iteratively 
improving it until we have the accuracy that 
we desire. For the same problem for which 
approach A showed no convergence, we get 
convergence for the SO approach. This is seen 
in red in Fig. 3.

The SO approach to heat flux calculations 
offers a drastic improvement to the current 
approaches when the mesh is severely 
distorted or the conductivity jumps across 
material interfaces. The approach however 
is more costly. Yet, because all other 
approaches suffer from their inaccuracies 
for more difficult problems, the cost of 
the SO approach is an adequate price to 
pay. Moreover, in the future, we will be 
investigating the accuracy of more efficient 
local solution methods.
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Figure 3—
Illustration of lack of 
convergence for existing 
approach (A/B), and 
illustration of conver-
gence for support-opera-
tors (SO) on a sequence 
of finer grids.

Figure 2—
Slice of smooth 3D 
mesh.
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